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points of the functional P. 
By virtue of (10) the function f defines a function of the class 0 on T" X 20, where 2, 

is a set of functions from 2 with zero mean. According to (121, setting I= Zi- t. we have 

f 6, 5) = ‘/,<At, P> t g @, Cl; f o- 2-r 6 E Z, 

where <AC, f) is a non-degenerate quadratic form on Z,= RN, and the partial derivatives of 
the function g are bounded for II 5ll--. From this and the results in /3/ the assertion of the 
theorem follows. 

The theorem can be extended to the case when the potential U is invariant relative to 
any crystallographic group G of transformations of the space Rn. In this case, 2" must be 
replaced by G in the proof, and the Lyusternik-Shnirel'man category of the space R*/G is the 
lower bound of the number of periodic solutions. 
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ON TRANSONI~ EXTENSIONS* 

A.L. BREZENEV and I.A. CBERNOV 

The problem of finding the particular solutions of the linearized inhomogeneous transonic 
equations appearing in the transonic expansions s expressed explicitly in terms of the funda- 
mental solution of the Eerman-Fal'kovich fEFt equation, is discussed. 

When the procedure of transonic expansion is used, e.g. in the thin-body theory /l/, the 
solutions of the equations of gas dynamics have the form of series in powers of a small par- 
ameter characterizing the measure of the deviation of the flow in question from homogeneous 
sonic, oranearly sonic flow. To a first approximation, the non-linear EF equation has to be 
solved 12, 3/, and inhomogeneous linearized EF equations whose rig&c-hand sides depend on the 
preceding terms are obtained for the higher-order approximations. It is convenient to have 
available an explicit expression for the particular solutions written in terms of the funda- 
mental solut$on. Thus in /4/ two examples are given of determining the first correction in 
the theory of small perturbations for the axisymmetric flows of a compressible fluid when the 
correction is expressed in terms of the fundamental solution without taking into account its 
specific structure, and the uniqueness of such results is noted. The first-order correction 
to the solution of the RF equation was obtained in /5/. 

In the case of plane parallel flow the RF equation reduces, in the hodograph plane, to 
the linear Tricomi equation t and the procedure of transonic expansion enables one, as was 
shown in /6, 7/, to determine particular solutions for any order of approximation. From this 
it follows that when transonic expansions are used, particular solutions of a general type can 
be obtained in the physical plane for the i-th approximation. The present communication does 
not demonstrate the procedure of passing from the hodograph expansions to expansions in the 
physical plane, but gives the following straightforward result: the first correction which is 
the same as that obtained in /5/, and the second correction. The facttbatcurvflinearfntegrals 
appear in the second correction but not in the first, is of interest. 

In the case of an axisymmetric flow the first correction to the solution of the EF 
equation has the same form as in the plane parallel case. However, attempts, using the analog'y 
with the plane-parallel case, to find the second correction in general form, have proved 
*Prikl.Mat~.~~~.,51,4,688-690,1987 
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unsuccessfull. A change of variables is suggested, which considerably simplifies the dif- 
ferential. equation used for its determination. 

The plane-parallel and irrotational axisymmetric flows of an inviscid gas are described 
by the equation 

-(Y+UTXo,,fVV, -t- W,lY == [(y + 1) rp,2/2 + (Y - 1) ‘ili?4cr,, -t- (1) 
2 (I+ cp,) ‘p,v,, + I(? -I- ‘) ‘p,v + (P - I) (‘p, + Tx2’2)1 CPU&, -7 
0 (Y - 1) (2y$ -I- gixa + ‘F,“) cp,/(2Y)- 

where r,Y are Cartesian or cylindrical coordinates, 'P is the perturbation potential of the 
sonic flow, 0 is a parameter equal to unity or zero respectively for plane and axisymmetric 
flow, and y is the ratio of the specific heats of the gas. 

In the near-sonic range of velocities Es.(l) is replace by the KF equation 

-(y-r- *) epoX'p~zX + 'pOYU + W,,/v= 6 (2) 

Let the solution 'pO of Eq.(2) be known. We will construct the solution 'p of Eq.(l) in 
the form of a series in powers of the small parameter e with principal term containing the 
function 'p. 

p =&~oo(F,S)+ e%l(r, Y)i@ci*(~, Y)!-. . . (3) 
f =- s/e, Ii=y 

Henceforth we shall omit the bars above the symbols. The corrections 'p,.'p2,. . satisfy 
the linear inhomogeneous equations which are obtained by substituting (3) into (1) 

K (cpl) = (2y- 1) (y + ') 'p&'po2+/2+ 2op,Y(P,,Y (4) 

fr: (tFz) = (y+')~,,rpl,+(Y--'iz)(y+ ~)(~~,~,,),+2 ('F@,rn,,),i- (5) 

I('/~~(Y-*)~~~ + W-y) ~~~~~~+2Y~~~~~~~~~ 
K(@)=- iv+ *)'p*$, -iv + ‘) ooXx@,-+@',V-f @@Y/Y 

Let us try to find the particular solutions VI, cp%! . of Eqs.(4) and (5) in general 
form, expressing them in terms of the function 'pO, its derivatives and integrals. Then 
formula (3) will represent the operator of the passage from the solution of the approximate 
KF Eq.(2) to the solution of the exact Eq.(l). 

In particular integral of Eq.(4) has the form /5/ 

'PI = ~Y%Xc(P@Y + QWox (6) 
A = (2y + 5)/10. B = (--2y -I- 5)/10, 0 = (' 

A=(2y+5)/4,B=i,o=i 

Let us substitute the function 'pt given by formula (6) into the right-hand side of (5). 
This will give us an inhomogeneous equation for % with the right-hand side consisting of 
24 terms 

A (VS) = .Q(y+ *)Yz~~=~~~~~~~*~~Y+. . ’ (7) 

where repeated dots denote the remaining 23 monomials on the right-hand side. 
Let us write the particular solution of Eq.(7) in the form 

(~2 = W@f,,,)+(%)(y + VA9Y%0r41~ + %* (5, Y) 63) 

Substituting (8) into (7) we obtain an inhomogeneous equation for oz* with a simpler 
right-hand side consisting of three terms 

K(W) =El~~,cp,,fEP[P~YI,+%cp,cp,Ycp,, (9) 

E, = (y + 1)(8y' + 5)/20, E, = (y + 1)/2, E, = 2(y + 1); o = 0 

E, = (y + 1)(4y* + 4y + 7)/8, E, = (3y + 6)/Z, E, = 4y + 7; o = 1 

When o= 0, the particular solution of (9) becomes 

[pp'=Cz 

C = -(24y'+70y+85)/140, D =(-24yP+7Oy+55)/146 

II = 

tw 

Here we use a curvilinear integral of the second kind independent of the path of inte- 
gration between the points (0,O) and (5,~). 

If p0 is a selfsimilar solution, then cpi will also have a selfsimilar form and expansion 
(3) will be written in the form (n is the selfsimilarity index, 5 i= xY"'(y+ I)"'- is the self- 
similar variable) 
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q = Y@%l(fJ + ysn-4 (y -I- lf”fl(3) + Y- (Y t- Pf* (3) t . . . 

Using (6), (8) and (10) we obtain the form fl,fz (a prime denotes differentiation with 
respect to 3) 

fl = o*f&’ + o&f;* (@J = 0, 0 = 4) 
aI = A (3n -2)+ B, a, = --nA 

6, = nzD!2 + (--10n $- 9)&?:(2H) 
b, = (-6n + 4)b,/n, b, = (3n - 2)*bl/ns 

b, = Iln (~8 - 1)A1/2 - nAB + D/6 + (2% - 24)nC!(6H) 
b, = (5n - 4)AB + 5 (3n - 2)(--n + 1)4*/Z + B* + (3n - 2)(-3n f 
3)Ci(2U) 

b, = 2a,az, br = 2A2, b, = Qi'2 
H = ('in - 6)(4n - 3) 

The method of expanding the solution of (1) in a series in selfsimilar components is 
widely used, beginning with /8/, but the form of the 
some particular values of n. 
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ON MATHEMATICAL MODELS OF MAGNETIC FLUIDS* 

V.A. Z~~OROVICH 

A system of equations describing models of magnetic fluids (MF) with internal angular 
momentum in a magnetic field is studied. Linearized equations and their solutions in the form 
of spin waves and magnetosonic waves are given. The high-frequency magnetic susceptibility 
tensor of the fluid is calculated and the frequencies of homogeneous magnetic resonance are 
determined. The connection between the spin and acoustic waves in MF is governed by the 
presence, in the internal energy of the fluid, of terms with vorticity vector and deformation 
rate tensor (determining, in particular, the hydromagnetic energy). Various existing models 
used to describe ferromagnetic fluids (FMF) are discussed. Relaxation models of MF are 
studied and used to obtain the solutions of problems of plane Couette flow and cylindrical 
Poiseuille flow. A new expression for the effective viscosity of the MF is obtained. 

Several different models of MF are known. The simplest model /l/ describes paramagnetic 
fluids and certain types of the FMF in quasistationary magnetic fields quite well. However, 
in a number of important cases the above model aannot be used (e.g. at high frequencies of the 
magnetic field and for FMF at high volume concentrations of ferromagnetic particles with a 
*Pr~l.~at~.~e~~.,51,4,69~7~,1907 


